Joint Investment Program on CBRN Protection
Joint Investment Programme CBRN (JIP CBRN)

- The EDA steering Board established the Joint Investment Programme CBRN (JIP CBRN) in spring 2010

- Contributing Members: AT, BE, CZ, DE, ES, IE, IT, FR, NL, PL, PT, SE and NO with a Budget of **12 million** EURO

- Programme Arrangement signature 22 March 2012 by Ministers. **14 Contracts signed in 2012-2015.**

- Adressing the following shortfalls:
 - stand-off detection C threats
 - point detection B threats
 - mixed CBRN samples handling
 - modelling and simulation of CBRN architectures
 - decontamination management
 - sensor networking for CBR
 - protection equipment
JIP CBRN (1/2)

- **Next generation Collective Protection**
 - RIAQ (new filter technologies for COLPRO)
 - A reliable, responsive, smart, multi-functional and cost effective filtration for buildings to protect soldiers, inhabitants, workers and visitors from airborne hazards.

- **Next generation Individual Protection**
 - PROSAFE (low burden PPE development)
 - Develop a system to detect the concentration of chemical warfare agents on textile substrates.
 - SWITCH PROTECT (low burden PPE development)
 - An adaptive membrane is being developed that will give a new dimension to personal protective clothing.

- **Improved Decontamination**
 - DCLAW (DECON wipes development)
 - Highly man-portable, broadly-specific and high throughput decontamination method that is safe and presents minimal risk to military and defence equipment and personnel.
 - QUIXOTE (new DECON concepts)
 - A biological and chemical decontamination unit from Cold Plasma Technology

- **DECON control**
 - RACED (DECON control technologies and methods)
 - Obtain insight into the health risk from possibly residual hazard remaining on decontaminated objects and contribute to the solution of the how-clean-is-clean challenge.

- **CBRN Sensor networking**
 - CENSIT (CBRN sensors fusion and networking)
 - What improved operational performance is possible to achieve by fusion of sensor information in tactical networks in order to enhance the CBRN situational awareness.
Modelling and Simulation of CBRN architectures
- MASC (development of CBRN protection architecture plug and play M&S tools)
 - Modules allowing for the evaluation of CBRN defence architectures that are currently implemented in the National Defence organizations

European approach for mixed CBRN samples handling
- BFREE (development of validated procedures to separation and preparation of potential mixtures into distinct samples)
 - Efficient sample processing and risk mitigation methods for ensuring safe handling and preparation of mixed CBRN samples

Stand off C detection
- AMURFOCAL (detection using amplified quantum cascade laser technology)
 - To explore different operational aspects of CWA detection and to create the library of reflectance spectra
- MICLID (detection using Mid Infrared LIDAR)
 - Developing a new generation lidar system for stand-off detection of chemical warfare agents.

Next generation B point detection
- IPODS (detection using single cell MALDI-TOF mass spectrometry linked to a Quick Immune Detection System)
 - Objective of “CBRN situational awareness” and, “biological point detection” in field and urban environments and operations.
- RAMBO (detection using combination of Surface Enhanced Raman Spectroscopy with Phages and PCR)
 - Advanced methods, instrumentation and sensing strategies/protocols for continuous monitoring of air particles against biological threats
- BIOTYPE (detection using antibody lab-on-chip technology with Photonic Integrated Circuits)
 - A sensor system for the early detection and identification of B-threats.