System Theoretic Process Analysis (STPA) / System Theoretic Accident Model and Processes (STAMP) as Acceptable Means of Compliance for Hazard Analysis

Military Airworthiness Conference

MAC2018

María Molina Martinez

Safety Section, Airworthiness Area - INTA Madrid, 26/09/18

Outline

- Possible areas for improvement for Hazard Analysis
- STAMP/STPA
- STPA as an acceptable mean for compliance
- CAST
- Conclusions

Accident Causality Model

All hazard analysis is based on some conception by the analyst (and built into the analysis technique) of how and why accidents occur. (Nancy Leveson, STPA Primer)

Hazard analysis \rightarrow based on an accident model.

Let`s look for areas of improvement!

Thinking of possible areas of improvement...

Thinking of possible areas of improvement...

Thinking of possible areas of improvement...

1.Situational Awareness Human errors in the hazard analysis

2. Software requirements errors

SW vs Requirements Errors

> Requirements, design or implementation errors \rightarrow development assurance processes.

- Correct: unambiguous, verifiable, and consistent with other requirements.
- Completeness: degree to which the requirement satisfies users, maintainers, and certifiers needs.

Can the requirements still be unsafe?

3. Component interaction design errors

Can an accident be caused by interactions among several components in complex systems?

- Without component failures
- >All components operating as designed

>Can the requirements be flawed?

Complexity of interactions leads to unexpected system behavior difficult to anticipate.

STAMP (Systems Theoretic Accident Model and Process)

STAMP \rightarrow accident model \rightarrow based on System Theory

→ STPA→hazard analysis method

Both developed at MIT by prof. Nancy Leveson and her team.

For complex, sociotechnical systems

Main principle: Safety is a control problem

Accidents results from inadequate control, not from chains of failure events

Free download at: https://mitpress.mit.edu/books/engineering-safer-world

STAMP (Systems Theoretic Accident Model and Process)

Process model (beliefs) formed based on feedback and other information

Control algorithm determines appropriate control actions given current beliefs

Author: Nancy Leveson- Engineering a Safer World

STAMP (Systems Theoretic Accident Model and Process)

STPA (System-Theoretic Process Analysis)

- Identify system accidents, hazards
- Draw functional control structure
- Identify unsafe control actions
- Identify accident scenarios

STPA as an aceptable mean for compliance

STPA as an acceptable mean for compliance

STPA as an aceptable mean for compliance

Failure of components identified, but no data available for redundancy or minimum reliability.

WAY AHEAD:

Let's determine how STPA could be used in combination with other existing traditional techniques and guidance material

>Let's look for international consensus on the use of STPA

FOR THAT REASON:	It is strongly recommended to include implementation
	of STPA on a pilot certification project

STPA as an acceptable mean for compliance

CAST-Causal Analysis using System Theory

How do we find inadequate control that caused the accident?

Investigation reports should explain

- Why it made sense for people to do what they did rather than judging them for what they allegedly did wrong, and
- What **changes** will reduce likelihood of accident happening again

Basic Process:

- Identify system hazard violated and system safety design constraints.
- Construct **safety control structure** as it was designed to work.
- For each component, determine if it fulfilled its responsibilities or provided inadequate control.

CAST-Causal Analysis using System Theory

Conclusions

>Hazard Analysis could include more design errors as possible contributors to accidents.

➢ It is strongly recommended to include implementation of STPA on a pilot certification program, so further studies are accomplished to integrate STPA with traditional techniques.

➢ For accident investigation, it is recommended the use of CAST.

➢ For concrete event analysis or critical processes, STPA could also be really useful and easy to implement.

CAST-Causal Analysis using System Theory

Thank you!

Bibliography

- FAR/CS: Parts 23/25/27/29. 1309 /AC_AMC_GM
- ARP 4761
- ARP 4754A
- MIL-STD-882E
- Engineering a Safer World (Leveson, 2011)
- STPA Handbook. <u>https://psas.scripts.mit.edu/home/</u>

Recognition:

- Dr. Nancy Leveson, MIT
- Dr. John Thomas, MIT

Contact

- molinamm@inta.es
- +34915201622

