

Circularity & AM

Mathieu SCHWANDER

Project Officer Circular Economy

INCUBATION FORUM FOR CIRCULAR ECONOMY IN EUROPEAN DEFENCE (IF CEED)

CIRCULARITY & AM (1) - INTRODUCTION

IF (we) 'CEED', we harvest!

> Additive Manufacturing contributes to an efficient use of resources

- ✓ Optimised design → use materials where needed.
- ✓ Adapted to lot-size-one and small series
 - → no need for mould / specific manufacturing ancillary equipment.
 - → enabler for production of spare parts (extending lifetime of assets).
- ✓ Possibility to use additive technologies for repair.

Source: AMD Engineering

Example: Optimisation of design & printing strategy with Artificial Intelligence / 1000Kelvin

INCUBATION FORUM FOR CIRCULAR ECONOMY IN EUROPEAN DEFENCE (IF CEED)

CIRCULARITY & AM (2) - DEPLOYABLE SOLUTIONS

- ✓ Printing spare parts to maintain operational capacity.
- Repairing instead of replacing.
- ✓ If coupled with recycling, optimal use of materials available.

> How can it help reduce the logistics & environmental footprint

- ✓ On-demand manufacturing (vs stockpiling).
- ✓ On-site manufacturing (vs dedicated shipment).

Example: Deployable 3D Printer with Integrated Recycling Unit / 3DPrint.lu

INCUBATION FORUM FOR CIRCULAR ECONOMY IN EUROPEAN DEFENCE (IF CEED)

CIRCULARITY & AM (3) - CIRCULARITY OF MATERIALS

> Closing the loop of materials

- ✓ Reduce the need for primary resources.
- ✓ Keep materials in the EU loop (especially for critical raw materials).
- ✓ Use of recycled and bio-based materials.

Example: Part printed with recycled material (brown / > 75% recycled content) & virgin materials / Ligtra

Example: polymer with biobased or recycled content / Tectonic3D

Sustainability materials Tectonic^{3D}

TenneT KRATIR PA11 CF

96% biobased polymer with recycled carbon fiber

TenneT KRATIR PA11 CF MC

96% biobased polymer with recycled carbon fiber with 15% density reduction for lightweight parts

TenneT KRATIR PP CF

Polypropylene with recycled Carbon fiber for extreme strength (13 GPA)

TenneT KRATIR PP CF MC

PP with recycled Carbon fiber for extreme strength (13 GPA)with up to 40% weight reduction

TenneT TPE 80A

TenneT PHA filled

A Flexible Thermoplastic elastomer with >50% biobased. Medical class 6 approved and sterilizable

TenneT KRATIR rPEEK CF

100% recycled PEEK with outstanding mechanical performance and easy to print.

TenneT PLA

PLA easy to print 100% biobased

100% biobased polymer PHA with natural fillers for higher strength. Seawater degradable and compostable.

Public

